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1 Introduction

Subwoofers have to deliver a high sound power level at low frequencies. this automat-
ically implies that they need to be large because of the large volume of air that needs
to be moved. Generally such large loudspeakers do not get much sympathy from
people who strive for home esthetics rather than sound quality due to constraints
in space and the dominant techno-style shape of a loudspeaker. In principle small
and inconspicuous loudspeakers can be realised by using smaller drivers, however
a small radiating surface requires a large diaphragm excursion to compensate the
small radiating surface and generate sufficient sound pressure. Unfortunately, a
large mechanical excursion will automatically account for an increased distortion
level by non-linearity of the actuator and the suspension.
To alleviate this issue, loudspeaker manufacturers have applied both impedance
matching devices (horns) and acoustic dynamic phenomena to increase the acoustic
output of a loudspeaker system without increasing the diaphragm excursion. This
paper deals with the second option, in particular with the bass reflex system, which is
still the most widely used example of applying dynamics phenomena to enhance the
performance at low frequencies. In a bassreflex system a passive resonating mass is
added, which is elastically coupled to the driver diaphragm and partly takes over
the low frequency sound generation below a certain frequency while simultaneously
reducing the excursion of the main loudspeaker.
The original purpose of this paper was to give students at the university a real
life example of how dynamic eigenmodes determine the vibrational properties of
mechanical structures. For that reason the dynamic analysis of a bassreflex system
is dominant in this paper.
The second (and my personal) goal was, however, to determine the real value of such
an approach for high quality loudspeakers. And, unfortunately for the majority of
loudspeaker manufacturers, the conclusion is that a bass reflex system is at best a
compromise but mostly utterly useless when a transparent reproduction of music is
strived for.
The paper starts with the Helmholtz Resonator, which is the basis of the bass-reflex
principle. Then, after some first thoughts about the applicability of a resonator at
low frequencies, a demonstrator is introduced where the principle was shown in the
classroom for a bassreflex system with passive diaphragm radiator. This example
is analysed for its dynamic properties followed by the same analysis for an air-port
resonator. Finally conclusions are drawn from the analysis.
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Figure 1: A Helmholtz resonator consists of an enclosed volume acting as an air-spring
with a tube shaped opening, the port. The mass of the air in the port resonates
with the stiffness of the air-spring.

2 Helmholz Resonator

In most cases a so called “Helmholtz Resonator” is used of which the principle is
shown in Figure 1. A Helmholtz resonator consists of a combination of an enclosed
volume of air (the cabinet) acting as a spring with a moving amount of air (the mass)
in a tube, the bassreflex-port. A well known example of a standalone Helmholtz
resonator is the generation of sound by blowing air over the opening in a bottle. The
resonance frequency of a Helmholtz resonator is calculated as follows starting with
the stiffness k of the air in the enclosure:

k =λS2 P0

V0
, (1)

with λ being a correction factor for the expansion of air ( 1.4), S the cross section
of the air-port, P0 the atmospheric pressure and V0 the volume of the enclosed air.
The mass of the air in the port is equal to ρaSp`p,eff, where ρa equals the density of
air and `p,eff equals the effective length of the moving air. The effective length is
somewhat larger than the physical length of the port alone as the air immediately
near the openings of the port also moves rapidly, decreasing with the distance to
the opening. As an empirically found ballpark figure, the effective length equals
the length of the port plus approximately 0.73 times the diameter dp of the port
(`p,eff = `p +0.73dp).
With these values the Helmholz resonance frequency can be calculated:

f0 = 1
2π

√
ka

mp
= 1

2π

√√√√ λP0S2
p

VeρaSp`p,eff
= 1

2π

√
λP0Sp

Veρa`p,eff
(2)

With the expression for the speed of sound c0 the eigenfrequency equals:

c0 =
√
λP0

ρa
⇒ f0 = c0

2π

√
Sp

Ve`p,eff
(3)
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When combining a Helmholtz resonator with a loudspeaker in one enclosure, the
bassreflex port takes over the sound generation from the loudspeaker at the reso-
nance frequency of the Helmholtz resonator. As a result the diaphragm of the driven
loudspeaker hardly moves at that frequency, allowing more electrical power to be
supplied to the system, thereby increasing the maximum acoustical output of the
system.

3 Bassreflex Systems for Very Low Frequencies

A disadvantage of using a resonator is that it collects energy which is delivered
back with some delay after the input signal is terminated, causing coloration of the
sound by a delayed resonance at the resonance frequency of the Helmholtz resonator.
The delayed resonance can be limited by damping which dissipates the vibration
energy into heat. With a standard bassreflex system damping is determined by
the loudspeaker-actuator in combination with the amplifier. A second damping
factor is the dissipated energy of the port which is difficult to tune as it is influ-
enced by the shape of the port and the amount of damping material used inside
the cabinet near the port. This situation almost guarantees differences between
each manufactured loudspeaker and to reduce these deviations a special version of
the bassreflex principle has been introduced where the moving air is replaced by
an additional loudspeaker diaphragm, named a passive radiator with well defined
dynamic properties. Still, as will be shown in Section 5.2 , it is impossible to create
a response without any delay unless the benefits of the bassreflex principle are fully
sacrificed.
Another and even more important drawback of the bassreflex system is the higher-
order (≈ 4th) drop-off below the Helmholz resonance frequency, which makes it
virtually impossible to boost the sound power by filter corrections below this fre-
quency. This higher-order drop-off is best understood when realising that at very
low frequencies the bassreflex port is just an acoustic short-circuit between the front
and the back side of the loudspeaker, which cancels the total sound pressure, just
like with a loudspeaker without an enclosure.
When trying to achieve a response until 20Hz with an acceptable dynamic response
without too much delay, one would need to bring the Helmholz resonance also at 20
Hz and this can only be achieved with extremely large enclosures. The alternative to
use a very thin pipe will not work as then the velocity in the pipe becomes too large
and turbulence will increase the flow resistance. In fact one can already conclude
from mere qualitative reasoning that a bassreflex system does not solve anything
for real high end subwoofers. For these reasons the principle is not used for the
subwoofers of RMS Acoustics and Mechatronics.
In the following section the dynamic analysis of bass reflex systems is presented,
further underlining these conclusive statements on the low-frequency limitations of
the principle.
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4 Bassreflex Dynamics

As part of the university classroom lectures on dynamics of motion systems, I have
often used a demonstrator with two coupled loudspeakers working according to the
bassreflex principle. The charm of the system is the easy observability of the dynamic
effects and the mental connection to real life systems as most of the students have
loudspeakers where the bassreflex principle is used. The demonstrator is based on
the same enclosure design that will be presented in the paper on “Sensorless Velocity
Feedback Subwoofer”, which also was developed for as a classroom demonstrator,
using two large loudspeakers and motional feedback.
The main difference of the approach in this section when compared with the well
known Thiele-Small analysis and many other related methods is found in the more
mechanical oriented approach. Regular analysis translates the lumped mechan-
ical elements like the rigid body the spring and the damper into their electronic
equivalents like inductor, capacitor and resistor. Depending on the method used,
the actuator is replaced by a gyrator or transformer and the analysis is further done
as if it was an electronic circuit. The usefulness of this electronic equivalent method
is proven over the years with many easily applicable computer programs of which
the free version of Scan-Speak which can be downloaded at their website is a good
example.
While this electronic equivalent method has its advantage in the possibility to use
dedicated software from the electronic domain, it is not capable of utilising the
knowledge on dynamics which has been gained over the years in the mechanical
domain with for instance vibration modal analysis which can model effectively break-
up phenomena and decoupling of compliant bodies. The propagation of sound in any
medium is a physical phenomenon with a clear relation to the mechanical domain”
which is a strong argument to remain in the mechanical domain when searching
improvements in reproducing music by loudspeakers. In this respect this section
can be seen is a starting point for learning the mechanical dynamics approach on
sound reproduction.

5 Bassreflex with Diaphragm Resonator

The enclosure as shown in Figure 2 was originally designed to be used as an active
controlled closed-box system as described in a separate paper on velocity feedback.
Due to the two loudspeakers that share the same enclosure it allows to experiment
with the passively radiating diaphragm principle by using one of the loudspeakers
as the active driven loudspeaker and the other as the passive radiator. The damping
of each loudspeaker can be controlled by the impedance between the external connec-
tions, either from the amplifier for the driven loudspeaker or by a series resistance
for the passive radiator.
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Loudspeaker 1
Driven

Loudspeaker 2
Passive

Amplifier

Air-spring by enclosed
volume

Figure 2: The enclosure of the subwoofer with two loudspeakers. With the bassreflex
principle one of the loudspeakers is driven by an amplifier while the other is
passively coupled to the driven loudspeaker by the stiffness of the air spring
enclosed by the cabinet.

5.1 Frequency Response of Diaphragm Resonator

The bass-reflex principle is directly related to the theory about the dynamic response
of two elastically coupled bodies to a force on one of the bodies. This theory1 shows
that the motion amplitude of driven loudspeaker should become zero at the anti-
resonance frequency determined by the moving mass of the passive radiator and the
stiffness of the coupling spring between the diaphragms ,which is determined by the
enclosed air.
The stiffness of the air between the two diaphragms can be calculated with the
same equation as used with the Helmholtz resonator. With the surface area of
the diaphragm Ad = 0.047 m2, an air pressure of 105 Pa, a volume of the enclosure
Ven = 0.06 m2 and λ= 1.2 due to the fibre filling:

ka =λS2
d

P0

Ve
= 1.2 ·0.0472 105

0.06
≈ 4.4 [N/m], (4)

For the total stiffness that the passive radiator experiences the stiffness of the
suspension needs to be added, which equals the inverse of the compliance (ks =
1/0.53 ·10−3 = 1.88 ·103 and leads to a total stiffness of:

ktot = (1.89+4.4) ·103 ≈ 6.3 ·103 [N/m] (5)
1For more detailed background information see the book “The Design of High Performance

Mechatronics” as presented on the website http://rmsacoustics.nl/education.html
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Specs:  
   

Electrical Data 
Nominal impedance Zn 4 ohm 
Minimum impedance Zmin 3 ohm 
Maximum impedance Zo 65.7 ohm 
DC resistance Re 2.6 ohm 
Voice coil inductance  Le 1.6 mH 
Capacitor in series with x ohm Cc -- uF 

T-S Parameters 
Resonance Frequency fs 19.1 Hz 
Mechanical Q factor Qms 9.29  
Electrical Q factor Qes 0.38  
Total Q factor Qts 0.37  
Ratio fs/Qts F --  
Force factor  Bl 10.3 Tm 
Mechanical resistance Rms 1.69 Kg/s 
Moving mass Mms 130.6 g 
Suspension compliance Cms 0.53 mm/N 
E�ective cone diameter D 24.4 cm 
E�ective piston area  Sd 466 cm 2 
Equivalent volume  Vas 159 ltrs 
Sensitivity  91.2 dB 
Ratio BL/ �(Re)  6.4   

   

Power handling 
100h RMS noise test (IEC)  -- W 
Long-term Max System Power 
(IEC) 

 -- W 

Max linear SPL (rms) @ power  -- dB/W 
Short Term Max power  -- W 

Voice Coil and Magnet Parameters 
Voice coil diameter  51 mm 
Voice coil height  32.6 mm 
Voice coil layers  4  
Height of the gap  8 mm 
Linear excursion +/-  13 mm 
Max mech. excursion +/-  -- mm 
Flux density of gap  -- mWb 
Total useful �ux  2.3 mWb 
Diameter of magnet  147 mm 
Height of magnet  35 mm 
Weight of magnet  2.2 Kg  

Figure 3: Characteristics of the applied loudspeaker, the Peerless XXLS 12.

With the moving mass of 0.13 kg this results in a natural frequency of the passive
radiator with this spring equal to:

f = ω

2π
= 1

2π

√
k
m

= 1
2π

√
6.3 ·103

0.13
≈ 35 [Hz] (6)

Measurement of this natural frequency showed a slightly lower frequency of 33 Hz
which might indicate that the filling works better in achieving an isothermal com-
pression/expansion (λ < 1.2) or that the stiffness of the suspension is lower. This
small deviation is acceptable within the accuracy of the approximated values and
the model is sufficiently correct to take the estimated values for the moving mass
and spring stiffness of the air in the enclosure and calculate the response of the
two loudspeakers, taking into account all springs and dampers. Figure 4 shows the
lumped-element model used to derive the frequency response functions where m1

equals the mass of the driven loudspeaker and m2 the mass of the passive radiator.
c1, c2, k1 and k2 are the springs and dampers of each element to the enclosure caused
by the guiding diaphragm (surround, spider and the electromagnetic damping. In the
model the previously found resemblance between radiated power and acceleration
is used and both sound-pressure responses are added together for the total sound
pressure. This corresponds with the earlier found conclusion that two loudspeakers
that generate the same sound pressure by a certain movement of the diaphragm
will together generate a sound power that is four times the sound power of one
loudspeaker (Pa ∝ p2

a, 2pa ⇒ 4Pa).
Starting with m1:

m1s2x1 = F − c1sx1 −k1x1 +kair(x2 − x1) (7)
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F

x2x1 

c1

k1 k2

kair

c2

m1 m2 

Figure 4: The lumped-element model of the bass reflex system with passive radiator is used
to derive the frequency response functions.

From this follows:

F = x1(m1s2 + c1s+k1 +kair)− x2kair (8)

The motion equation for mass m2 equals

m2s2x2 =−c2sx2 −k2x2 + x1kair − x2kair (9)

and the displacement x2 can be written as function from x1:

x2 = x1
kair

m2s2 + c2s+k2 +kair
(10)

Filling this in Equation (8) and careful applying some algebra leads to the following
equations:

x1

F
= m2s2 + c2s+k2 +kair

a4s4 +a3s3 +a2s2 +a1s+k1k2 +k1kair +k2kair
(11)

And:
x2

F
= kair

a4s4 +a3s3 +a2s2 +a1s+k1k2 +k1kair +k2kair
(12)

With:

a4 = m1m2

a3 = m1c2 +m2c1

a2 = m1k2 + c1c2 +m2k1 + (m1 +m2)kair

a1 = c1k2 + c2k1 + (c1 + c2)kair

Replacing s with jω and multiplying with s2 =−ω2 ultimately leads to the following
radial frequency response functions for the sound pressure. Note that this is only a
proportionality relation to the sound pressure as only the acceleration is calculated.
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To calculate the real soundpressure it must bemultiplied with the radiating efficiency
of the diaphragm at a certain distance:

Pa,1(ω)∝ m2ω
4 − j · c2ω

3 − (k2 +kair)ω2

a4ω4 − j ·a3ω3 −a2ω2 + j ·a1ω+k1k2 +k1kair +k2kair
(13)

and for the passive radiator:

Pa,2(ω)∝ −kairω
2

a4ω4 − j ·a3ω3 −a2ω2 + j ·a1ω+k1k2 +k1kair +k2kair
(14)

The total sound pressure is than equal to the difference of these equations as being
caused by the motion difference between the two diaphragms.
With the help of MATLAB the responses for different levels of damping are calculated
using the above equations. By subtracting both responses the sound response is
obtained because the difference of movement creates the acoustic pressure/power.
The first Bode-plot of Figure 5 shows the effect of the situation when the damping is
very low as would be the case when the amplifier has a high output impedance, like
a current source. At very low frequencies both masses move in phase until a clear
resonance at around 19 Hz. This resonance is caused by the surround diaphragm
and spider of both loudspeakers and corresponds with the given resonance frequency
characteristics of the used loudspeaker when not mounted in an enclosure. They
move both in the same direction so the air volume in enclosure does not change by
this movement, causing no additional stiffness.
At a higher frequency the passive radiator will dynamically decouple from the driven
loudspeaker because the spring can not supply enough force to accelerate the passive
radiator. Eventually this causes a negative peak, the anti-resonance in the response
of the driven loudspeaker at the predicted 33 Hz. At the second resonance frequency
both masses will move in counter phase. Now each loudspeaker works on half the
volume of the enclosure which means that the gas spring of the enclosure is equally
divided over each loudspeaker so they both get twice the stiffness of the total enclosed
air between both loudspeakers:

k = 2 ·4.4= 8.8 ·103 [N/m] (15)

Adding the stiffness of the diaphragm suspension results in the total stiffness per
loudspeaker:

k = (1.89+8.8) ·103 ≈ 11 ·103 [N/m] (16)

This results in a resonance frequency of:

f = ω

2π
= 1

2π

√
k
m

= 45 [Hz] (17)

As the diaphragms now move in the opposite direction of each other they will create a
sound pressure and as a result the summed response shows a very strong resonance.
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Figure 5: Bode plot of the undamped and damped responses from both the driven diaphragm
(blue), the passive radiator (red) and the combined responses (black). Below the
first resonance at ≈ 20 Hz both diaphragmsmove in the same direction and give no
sound pressure. The damping matches the situation when the driven loudspeaker
is connected to a voltage source amplifier. The damped step response is still quite
nervous. This can be improved by also damping the passive radiator but then the
beneficial effect of the resonator in the low frequency response is also reduced.
Note the fourth order 24 dB/octave slope below the maximum value at 40 Hz in
the combined response
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Figure 6: The response of the driven and the resonator diaphragm on a starting sinusoidal
signal with a frequency equal to the Helmholtz frequency,shows clearly that first
the driven diaphragm will create the sound pressure while after a few periods the
resonator takes over. This is most clearly seen with low damping but then also
the total response shows overshoot. When both diaphragms have some amount of
damping the system can be made to act without overshoot, however, in that case
the total response becomes almost equal to the response of the driven diaphragm.

In order to reduce this resonance peak, damping is applied on the driven loudspeaker
by using a voltage source amplifier. The effect is shown in the second Bode-plot of
Figure 5 and also in the stepresponse. The added damping clearly reduces the high
peak in the frequency response but the sound contribution of the second passive
diaphragm is also reduced. Still the summed output shows an acceptable resonance
with less than 3 dB increase in magnitude at 40 Hz and a -3 dB bandwidth @ 30
Hz. The stepresponse is still not very well damped with almost two full periods
of ≈ 2.5 ms (≈ 40 Hz) which would clearly cause an over emphasis of 40Hz at low
frequency transients, creating a “boombox” sound. More damping could be applied at
the passive radiator to reduce the resonance but this also reduces the beneficial effect
of the reduction of the loudspeaker excursion as demonstrated in Figure 5, when
comparing a: and b:. Furthermore it is quite expensive to use a full loudspeaker to
only contribute some damping at this very limited frequency area. For this reason
normally the electromagnetic actuator is omitted with the passive radiator and only
the mass is tuned while the surround is made from damping rubber to reduce the
resonance to an acceptable level.

5.2 Time Domain Response of Sine Signal

The stepresponse of Figure 5 showed a clear periodic reaction with an undamped
resonator. Musical signals are, however, never like a step function but rather like a
discontinuous series of sine functions and it is interesting to see the behaviour of
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both diaphragms on such signals.
Figure 6 shows the calculated time-domain response of a bassreflex system with a
passive resonator for two situations, where in both cases a sinusoidal signal with
a frequency, equal to the Helmholtz resonance frequency of the passive resonator
diaphragm, is started at t = 0. In the first situation both the driven diaphragm and
the resonating diaphragm have a moderate level of damping and it clearly confirms
that the dip in the frequency response of the driven diaphragm from Figure 5
only occurs after some time, because the resonator needs to build up its energy.
Furthermore, at a higher level of damping of both diaphragms, as shown in the right
graph of Figure 6, the contribution of the resonating diaphragm to the total sound
pressure is almost gone. This also corresponds to the frequency response curves
from Figure 5.
Two important conclusions can be drawn from these graphs.

• The often assumed benefit that a bassreflex system could allow the use of
a smaller driven loudspeaker than with a closed box enclosure for the same
maximum low frequency sound pressure is only true for continuous signals
and a low damping resonating diaphragm. With varying and sudden bass, like
with a base drum, this benefit is non-existing.

• A low level of damping will always create overshoot in the response but a higher
level of damping will reduce the benefit of the bassreflex principle. For this rea-
son small subwoofers for computers and cheap home-movie surround systems
are always equipped with undamped resonators, resulting in an exaggerated
boom bass, which is sometimes nice whan watching a war movie but more often
very tiring, while cause a headache.

Like most things in real life, there is no such thing as a free lunch. Mostly benefits
on one aspect are counteracted by drawbacks on other aspects.

5.3 Modal analysis of Diaphragm Resonator.

The analytical expression of the frequency response becomes quickly quite com-
plicated when describing higher order dynamic structures with several lumped
bodies, springs and dampers. For that reason a dynamic system is often analysed
by means of its vibration eigenmodes. This is allowed when the system dynamics
are essentially linear as then the total dynamic behaviour can be modelled as the
superposition of the behaviour of the system in its separate eigenmodes. The theory
of eigenmodes is based on the property that a non-rigid dynamic system, described
as a series of bodies connected by springs and dampers, shows several characteristic
resonance frequencies. Excitation at these frequencies will cause a synchronous
periodic movement of all bodies of the system. The characteristic periodic movement
is called an “eigenmode” where the German and Dutch word “eigen” means “own”,
reflecting the fact that it is a characteristic system property. The corresponding
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Figure 7: Splitting of the fourth-order dynamic system in two second-order mass-spring
systems according to the eigenmodes of the system. The first eigenmode is the
rigid-body mode where both diaphragms m1 and m2 move in the same direction
as if they were one body with modal mass mm. The mass and suspension stiffness
of both diaphragms can then be added to determine the dynamic response of the
first eigenmode. The second eigenmode is a bit more complicated to comprehend.
It is the mode where both masses move opposite to each other with the same
amplitude as if driven by a mechanism. The symmetry allows a mirroring of the
second body with its related springs and like with the first eigenmode the modal
mass mm = m1 +m2. Special attention is needed for the connecting air spring
which is a factor four larger in the equivalent simple mass-spring system.
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resonance frequency is called the eigenfrequency of that mode, while the movement
amplitude as function of the bodies is called the “mode-shape” described by the shape
function, a vector notation with terms for each body, where the sign of the value
represents the phase at that point relative to the reference body.
As an example the undamped response of Figure 5 shows two clearly distinguishable
eigenfrequencies, one at 20 Hz and one at 45 Hz. The eigenmode that corresponds to
20 Hz has a mode shape that is uniform and equal for both loudspeaker diaphragms
(Shape function [ 1 1 ]T). The second eigenmode at 45Hz has a mode shape where
both diaphragms move opposite to each other with an equal amplitude (Shape func-
tion [ 1 −1 ]T).
From this example one could conclude that the amount of eigenmodes is equal to
the square root of the order of the system, which is correct. In principle the exact
model of a real system should consist of an infinite amount of springs, dampers and
bodies with a corresponding large amount of eigenmodes. In a loudspeaker these are
most visible at the higher frequencies where diaphragm-breakup, edge diffraction
and other dynamic phenomena represent each their own eigenmodes. In practice
the infinite amount of eigenmodes can be reduced to a smaller set by neglecting
eigenmodes with a very high eigenfrequency, outside the frequency range of interest.
With the example of the passive radiator bassreflex system this set can be restricted
to the two mentioned eigenmodes, because this analysis focuses on low frequency
sound reproduction.
The reason why this modal analysis is introduced here with this symplified system
is its usefulness to explain the anti-resonance of the driven loudspeaker as not being
a resonance at all. For that reason it also does not correspond to an eigenmode.
Figure 7 shows the mode-shapes that belong to the two eigenmodes of this fourth-
order system while re-arranging the lumped-elements such that their modal be-
haviour can be directly determined. One should be aware that this simplification is
only valid for this specific symmetric situation with equal mass and stiffness values.
In the next section it will be shown that an asymmetric system like the bassreflex
system with air-port needs some additional adaptations to enable the analysis.
The first eigenmode is the low frequency mode where both diaphragms move in
the same direction with equal amplitude and phase, supported by the suspension
rubber and spider. With this mode the connecting air-spring is not deforming and its
influence can thus be neglected from the analysis. This first eigenmode will have an
eigenfrequency which is equal to the eigenfrequency of the unmounted loudspeaker,
because the combined masses of the two diaphragms work together with a total, so
called “modal mass” mm = m1+m2 on the combined stiffness of the two suspensions:

f0 = 1
2π

√
k1 +k2

m1 +m2
= 1

2π

√
k
m

≈ 18 [Hz] (18)

when m = m1 = m2 and k = k1 = k2.
This corresponds with the first resonance peak in Figure 8.
The second eigenmode is, as mentioned, related to the opposite movement of the
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two bodies, elastically coupled with the connecting air-spring and an eigenfrequency
as calculated in Equation (17). The movement amplitude is defined by the masses
of the two bodies where a larger mass shows a lower amplitude to correlate the
acceleration with the equal force in the connecting spring (F = ma).
To imagine both eigenmodes is not extremely difficult. The first eigenmode is the
most easy to imagine with the two loudspeakers moving in the same direction, even
when only one of them is driven. Like a car with a caravan.
To imagine the second eigenmode one should think of two balls connected with a
spring hanging in outer space. An astronaut grabs these balls, stretches the spring
and lets the balls loose. Now it is easy to see that the balls first approach each other
until the spring is compressed, then they separate again, etc. When the balls have a
different mass the smaller ball will move more quickly. In extremis, like with a car
as the first body connected via its suspension to the earth as second body, a bumping
car will hardly move the earth due to the immense mass difference.
In the complete system the combination of bothmodes determines the total behaviour
and as a result a force in the positive x-direction will also result in a movement of the
second body in the positive x-direction but less than with the first eigenmode only.
For the first body the response of the second eigenmode is positively added to the
first eigenmode while the second eigenmode is subtracted from the first eigenmode
for the second body.

It is interesting to see how the elements can be rearranged in ones imagination for
the analytical understanding in this case where both moving diaphragms have the
same mass. Especially the impact of the air-spring will prove to be significant. In
this specific situation with two equal masses the magnitude of the movement of both
masses is equal. As a consequence the middle of the air-spring does not move. One
might call it a “node” where only force is transferred and for that reason this middle
point could be connected to the stationary world like a wall without effect on the
eigenmode from a dynamic point of view. This means that each body works on half
the spring with double the stiffness as the full spring.
The presence of a imaginary wall in the middle allows to imagine the second body
mirrored to the other side of the wall, while it also could be directly connected to
the first body. This is allowed for the analysis as the movements are equal for this
eigenmode. As a last step all mass and stiffness values can be added like with the
first eigenmode. This means that also for this second eigenmode the modal mass
mm becomes equal to m1 +m2 and the air-spring stiffness appears with a factor four
times kair in the equivalent simplified mass-spring system. For the example this
stiffness equals ≈ 1.8 ·104 N/m
The combined frequency-response transfer function can be derived from the two
responses as shown in Figure 7.
The frequency responses start at low frequencies on a different level because of the
difference in stiffness of both modes due to the air-spring. At 18 Hz the common



5.3 Modal analysis of Diaphragm Resonator. 17

  
50

60

70

80

90

100

110

120
a: Driven loudspeaker

O
ut

pu
t [

dB
]

 

 

101 102
−180

0

180

Ph
as

e 
[D

eg
    
]

Frequency [Hz]

  
50

60

70

80

90

100

110

120
b: Passive radiator

101 102
−180

0

180

Frequency [Hz]

M
ag

ni
tu

de
 [d

B]

Eigenmode 1
Eigenmode 2
Combined modes 
Total sound output

Ph
as

e 
[D

eg
]

Figure 8: Bode plots of the diaphragms as combined response from the two undamped
eigenmodes. The difference in phase of the driven loudspeaker m1 and the passive
radiator m2 in the second eigenmode causes an “anti-resonance” at approximately
33 Hz because at that frequency the contributions of both eigenmodes are equal
but with an opposite sign. With the passive radiator the phases are equal hence
the values simply add to the double value (+6dB). Note the combined sound
response which is simply double (+6dB) the response of the second eigenmode for
each loudspeaker.

eigenfrequency of the first eigenmode is visible in the response of both diaphragms.
At ≈35 Hz the magnitude of both modes is equal and to determine the combined
movement it is important to look at the phase of both modes. For the driven loud-
speaker the first eigenmode has almost 0◦phase at 35Hz while the second eigenmode
has +180◦ phase. This means both contributions to the movement of the first di-
aphragm will cancel each other out and cause the anti-resonance which appears to
be no resonance at all but just the combination of two equal opposite movements.
For the passive radiator the situation is different because here the second eigenmode
moves in the opposite direction of the driven loudspeaker. An opposite movement
means 180◦phase and as a consequence the first and second eigenmode have the same
180◦phase at 35 Hz for the passive radiator. As a consequence the movements add
to a factor two (+6 dB). At higher frequencies first the eigenfrequency of the second
eigenmode at ≈45 Hz shows its characteristic resonance peak. Above 45 Hz the
driven loudspeaker follows a flat response corresponding by a constant acceleration,
like with a closed box loudspeaker. The passive radiator however shows a -2 slope at
increasing frequencies which is caused by the fact that both eigenmodes approach
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the same mass-determined response corresponding with 1/(m1 +m2) with a phase
difference of 180◦which means that they cancel each other out more at higher
frequencies.
The effect of damping is equal as shown with the analytical calculations. It should
be noted that damping of the driven loudspeaker acts on both eigenmodes but with
different levels. The quality factor Q =

p
km/c is higher with the high stiffness

of the second eigenmode which means that more damping is needed to suppress
this second eigenmode. This is not always sufficiently possible leading to “boom-
bass”. A loudspeaker must be designed according to the application by tuning the
electromagnetic properties of the actuator to the mass and the enclosure otherwise
the result will not be acceptable.
Further it is good to be aware that the sound is only produced by the second eigen-
mode which matches the green line in the figure which is a factor 2 (+6 dB) above
the movement of each diaphragm apart for this second eigenmode only. This factor 2
is due to the fact that the calculation is made for both eigenmodes separately, when
driven with a unit force. When combined this force would be divided by two over the
two eigenmodes, thereby cancelling the factor 2 in reality.
From this observation one can conclude that it is better to only drive the system in its
second eigenmode with sufficient damping. This requires that the first eigenmode is
not excited and that is only possible when the passive radiator is also driven. When
doing so the system becomes identical to a closed box with two drivers, which do
deliver +6dB when compared to one driver because of the twice supplied electrical
power.

6 Bassreflex with Air-Port Resonator

A passive radiator is always more expensive than an air-port made by means of a
plastic tube. This low cost level is the main reason that the latter is mostly applied
even though it is more difficult to achieve a well defined low frequency behaviour.
Figure 9,a: shows a schematic drawing of the principle where the passive radiator is
replaced by a volume of air contained within a tube that is open both to the outside
and to the inside of the enclosure. The air-volume in the bassreflex-port will act
as the second passively radiating body and determine a resonating eigenfrequency
with the spring of the enclosure and the mass of the driven loudspeaker diaphragm.
Unfortunately the modal analysis of this system is less simple as with the previously
described symmetrical system. This is caused by the difference in diameter of
the bassreflex port and the loudspeaker diaphragm and the different mass values.
Still it will be shown that the same “anti-resonance” effect occurs on the driven
loudspeaker as with the passive radiator. This corresponds approximately with the
eigenfrequency of a Helmholtz resonator determined by the air-mass in the port
and the enclosed volume of air as explained in Figure 1. It is also important to
note that the same dynamic limitations that were described in Section 5.2 are valid
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Figure 9: A normal bassreflex loudspeaker enclosure (a:) applies a volume of air as passive
radiator. This volume of air is enclosed by a pipe or port that is open at both sides,
connecting the enclosure volume to the environment. The mass of the volume
of air inside the air-port or bassreflex-port port will resonate with the stiffness
of the air spring by the enclosure volume causing a reduction of the excursion
amplitude of the driven loudspeaker diaphragm at that frequency. The lumped
element equivalent scheme (b:) is used to derive the frequency transfer functions.

for bassreflex systems with an air-port resonator, because, as will be shown, the
dynamics are essentially equal.

6.1 Frequency Response of Air-Port Resonator

The frequency response for both moving elements is determined with the help of the
lumped-element model of Figure 9,b:. New terms in this model are the radiating
surfaces S1 = 0.25πd2

1 for the driven loudspeaker and S2 = 0.25πd2
2 for the opening

of the bassreflex port, where d stands for the diameter. The mass of the passive
radiator is determined by the volume of the port Vport = S2`eff and the density of air
(ρ ≈ 1.2 kg/m2). As mentioned with the Helmholtz resonator, the effective length `eff

equals the length of the port plus approximately 0.73 times the diameter of the port
(`eff = `+0.73d2). The factor λ for the adiabatic compression/expansion of the air in
the enclosure can be accounted with as a factor reducing the volume of air in the
enclosure Ve.
Starting with the driven loudspeaker with mass m1:

m1s2x1 = F − x1S1

Ve
P0S1 − x1ks + x2S2

Ve
P0S1 − c1sx1 (19)
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where ks equals the stiffness of the surround suspension of the loudspeaker and P0

equals the air pressure of the environment (≈ 105 Pa). Both fractions in the above
equation represent the relative volume change by a movement of the respective
elements which, after multiplication with the average environmental pressure and
the radiating surface S1 of the loudspeaker, gives the force on that surface due to
the movement of each element.
Written as force in terms of x1 and x2 this equation is written as:

F = x1

(
m1s2 + c1s+ S2

1P0

Ve
+ks

)
− x2

S1S2P0

Ve
(20)

Doing the same steps as with the loudspeaker the motion equation for the passive
radiating air-mass m2 can be derived, resulting in the following relation between x1

and x2:

x2

(
m2s2 + c2s+ S2

2P0

Ve

)
= x1

S1S2P0

Ve
(21)

To simplify further calculations three stiffness terms are defined:

k1 =
S2

1P0

Ve
+ks, k2 =

S2
2P0

Ve
, and k3 = S1S2P0

Ve
(22)

With these terms Equation (20) is simplified into:

F = x1(m1s2 + c1s+k1)− x2k3 (23)

and with Equation (21) the displacement x2 can be written as function from x1:

x2 = x1
k3

m2s2 + c2s+k2
(24)

Filling this in Equation (23) and careful applying some algebra leads to the following
transfer functions from force to motion:

x1

F
= m2s2 + c2s+k2

a4s4 +a3s3 +a2s2 +a1s+k1k2 −k2
3

(25)

and:
x2

F
= k3

a4s4 +a3s3 +a2s2 +a1s+k1k2 −k2
3

(26)

with:

a4 = m1m2

a3 = m1c2 +m2c1

a2 = m1k2 + c1c2 +m2k1

a1 = c1k2 + c2k1
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Replacing s with jω and multiplying the numerator with s2 =−ω2 to get the accel-
eration response, ultimately leads to the following proportional radial frequency
response functions for the soundpressure of the loudspeaker diaphragm:

Pa,1(ω)∝ m2ω
4 − j · c2ω

3 −k2ω
2

a4ω4 − j ·a3ω3 −a2ω2 + j ·a1ω+k1k2 −k2
3

(27)

To retain the same proportionality for the soundpressure of the passive radiator it
is necessary to correct for the much smaller radiating surface for which reason the
transfer function is multiplied with the ratio S2/S1:

Pa,2(ω)∝
−k3

S2

S1
ω2

a4ω4 − j ·a3ω3 −a2ω2 + j ·a1ω+k1k2 −k2
3

= −k2ω
2

a4ω4 − j ·a3ω3 −a2ω2 + j ·a1ω+k1k2 −k2
3

(28)

The total sound pressure is than equal to the difference of these equations as being
caused by the motion difference between the driven loudspeaker and the moving air
in the bassreflex port.
As an example the applied loudspeaker of the previous part is used in the same
enclosure cabinet while the passive radiating diaphragm is replaced by a tube with
a diameter of 50 mm and a length `= 100 mm. The air volume is then approximately
0.00027 m3 because, as mentioned before, also the air just outside the port has to be
taken into account, giving an effective length `eff ≈ 140 mm. The resulting moving
mass of the passive radiator is then approximately 0.33 ·10−3 kg. This is more then
a factor 100 below the moving mass of the active driven loudspeaker diaphragm and
one would expect little effect. The frequency response functions for the little damped
and optimally damped situation are calculated in MATLAB and shown in Figure 10,
unexpectedly indicating a comparable dynamic characteristic as with the passive
radiating diaphragm. As will be showed with the modal analysis this is caused by
the ratios between the active surfaces of the air in the tube and the loudspeaker
diaphragm. This is very prominently shown with the first eigenfrequency which is
significantly below the 20 Hz resonance frequency of the unmounted loudspeaker.
When looking at the modal mass analysis in the next section it is showed that
the small mass of the air is perceived as a large mass on the driven loudspeaker
diaphragm to the ratio of the radiating surfaces squared.

6.2 Stepresponse of Air-Port Resonator

The stepresponse from Figure 10 is calculated for four different settings of the
mainly resistive amplifier output impedance. A true voltage source amplifier which
almost all modern amplifiers are, shows a better damped stepresponse than the
passive radiator with only one period of delayed response. This difference in dynamic
behaviour is related to a somewhat higher damping of the air-port by the high velocity
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Figure 10: The Bode plots with little (a:) and optimal (b:) damping and step response with
different levels of damping of the bassreflex system designed with the same 60 L
enclosure as the passive loudspeaker diaphragm system of the previous section,
where the passive radiating diaphragm is exchanged by an air volume in a pipe
of 50 mm diameter and 100 mm length. When provided with the damping caused
by a voltage source amplifier the frequency responses look almost equal as with
the passive radiating diaphragm. The step response is improved although it is
clearly seen that an amplifier with a non-zero output impedance rapidly results
in a deterioration with a strong delayed resonance after a transient.
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Figure 11: The impact of the damping in Ns/m by the port on two settings of amplifier
impedance. With a voltage source amplifier (0 Ω) the level of port-damping
influences the magnitude rather than the periodicity of the response while a
high output impedance amplifier (2 Ω) benefits more of a stronger damped port.

of the air than was the case with the modelled undamped passive diaphragm of the
previous case. An increasing amplifier impedance shows a significant effect on the
delayed resonance with almost three periods when the impedance of the amplifier
becomes equal to the resistive value of the loudspeaker impedance. Even though
this is a high value especially tube amplifiers often show an output impedance in the
Ohmic range due to lack of feedback and these amplifiers require a higher level of
internal damping by for instance the port. This is demonstrated in Figure 11 where
four different levels of port damping are calculated for two settings of amplifier
impedance. Both situations show a beneficial effect of increased port damping
but the effect is most prominent with the high output impedance amplifier. This
indicates that a less fortunate amplifier loudspeaker combination can be improved
by increasing the port damping. A reason why several people prefer to combine their
tube amplifier with a bassreflex loudspeaker over a closed box loudspeaker.
The beneficial effect of the port damping on the dynamics is however at a sacrifice of
noise as most of the energy is dissipated in turbulence around the edges of the port.
This can be improved by rounding the edges but then the damping is decreased and
one might insert a piece of fibre padding or rubber foam with open cells inside the
tube to increase the damping. This again is quite unpredictable, resulting in a larger
spread in performance of different loudspeakers with the same design. On the other
hand it gives the possibility to tune a loudspeaker to the amplifier and with suitable
measuring microphones one can even optimise the system for the listening room to
a limited extent.
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6.3 Modal Analysis of Air-Port Resonator

It was previously explained that the modal analysis of a “normal” mechanical system
consisting of lumped bodies, springs and dampers is based on the principle that
each eigenmode can exist independent of the others and will show a resonance when
excited in its eigenfrequency. It also implies that no other external forces act on the
system other than the excitation force by the actuator and the forces in the springs
and dampers that connect the bodies to each other and to the stationary world.
The passive radiator had the same diameter as the driven loudspeaker for which
reason the connecting air could be modelled straightforward as a mechanical spring
acting equally on both diaphragms. The system with a bassreflex port is however
quite different as the driven loudspeaker will experience another stiffness value by
the enclosed air volume as the air-mass in the port, due to the diameter difference
that comes squared in the equation for the stiffness value. Furthermore the volume
of air acts like a compressible medium creating forces to all surfaces inside the
enclosure.
The easy part is the fact that also in this case it is allowed to limit the relevant
eigenmodes to just two as the non-modal analysis shows two clearly distinguishable
eigenfrequencies, corresponding to a first eigenmode where both bodies (diaphragm
and air-column in the bassreflex port) move in the same direction and a second
eigenmode where they move opposite to each other.
The first eigenmode will have a mode-shape where the air in the bassreflex port
will show a higher amplitude than the loudspeaker diaphragm in the ratio of the
cross-section of the loudspeaker and the bassreflex port. When assuming the air to
be incompressible, the corresponding shape function would equal

[
1 S1

S2

]T
). The

assumption of incompressibility at the low frequency is based on the understanding
that at this frequency the air in the port will not yet receive much motion resistance,
hence not exert large forces. It will be shown that this assumption is only allowed
for a very rough approximation and in any case the mass of the air is accelerated
with a large factor higher than the first body and this has a very interesting effect
on the equivalent modal mass as observed at the point of excitation, which is the
first moving mass. This is best explained with mathematics, starting with Newton’s
second law on inertia (F = ma) with the variables as defined in Figure 9:

Fa = mma1 = m1a1 +Fr =⇒ mm = m1 + Fr

a1
(29)

where a1 equals the acceleration of the driven loudspeaker with mass m1 and Fr

equals the reactive force by the mass m2 of the air in the bassreflex port. This
reactive force is equal to the pressure Pe that is created by the force F2 = m2a2 that
accelerates the air in the port.

Fr = PeS1 = F2
S1

S2
= m2a2

S1

S2
= m2a1

(
S1

S2

)2
= m2a1

(
d1

d2

)4
(30)

Note that in the relation between the acceleration levels the condition of incompress-
ibility is assumed. Both equations combined give the following value for the modal
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mass:

mm = m1 +m2

(
S1

S2

)2
= m1 +m2

(
d1

d2

)4
(31)

With S1 = 0.0466 m2 for the driven loudspeaker, S2 = 0.25π0.052 = 0.002 for the port
and m2 = 0.33 ·10−3 kg, the modal mass for the first eigenmode becomes equal to
mm = m1+0.18= 0.13+0.18≈ 0.3 kg. This means that the mass of the air is even more
dominant than the mass of the driven loudspeaker for this eigenmode. In reality
it is necessary to take into account the real finite stiffness for the connecting air
spring. It is well imaginable that a lower stiffness value than infinite will create a
smaller movement of the mass of the air in the bassreflex port, thus reducing the
reactive force. Most probably the modal mass component of the air in the bassreflex
port is approximately equal to the mass of the loudspeaker diaphragm like is the
case for the second eigenmode as will be shown further on.
The stiffness of the connection of the first eigenmode to the stationary enclosure is
equal to the stiffness of the suspension of the driven loudspeaker. With this stiffness
the more than doubled mass will result in a significantly lower eigenfrequency at
≈ 1/

p
2 times the eigenfrequency of the unmounted loudspeaker which was ≈ 18 Hz.

The resulting resonance at around 12 Hz corresponds with the value shown in
Figure 10.a:. Unfortunately this lower frequency does not mean that the loudspeaker
will reproduce sound at this frequency as the sound pressure is not produced by the
first eigenmode, which was also the case with the passive diaphragm version. Even
though the air in the port moves faster in the ratio of the radiating surfaces, the
same ratio compensates the effect on sound pressure as it is linear proportional to
both surface and excursion(Pa ∝ Sx).
For the sound radiation the second eigenmode is the determining factor and this
analysis is even more complicated because now the compressibility of the air must be
taken into account. The starting point for this modal analysis is the assumption that
the enclosure is small in respect to the wavelength of the sound at the eigenfrequency
of the second eigenmode. From Figure 10.a: this eigenfrequency is expected around
45 Hz where the second resonance is shown. This corresponds to a wavelength
of several metres so the condition is met and as a consequence the air pressure
can be assumed homogeneous inside the enclosure. This means that the forces
acting on both moving masses will relate to the radiating surfaces S1 and S2. At
the eigenfrequency of the second eigenmode the system is in full equilibrium and
assuming no energy is dissipated it will keep resonating at this frequency. In that
case the relative periodic accelerations and the directly proportional relative periodic
displacements of both bodies can then be calculated as follows using Newton’s second
law with the necessary equilibrium in pressure inside the enclosure:

F1 = S1Pe = m1a1 = m1s2x1 ⇒ x1 = S1Pe

m1s2

F2 = S2Pe = m2a2 = m2s2x2 ⇒ x2 = S2Pe

m2s2 (32)
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This enables to write down the following ratio between x1 and x2:

x1

x2
= m2S1

m1S2
(33)

The sound pressure is a function of the excursion and the radiating surfaces (Pa ∝ xS)
giving:

Pa,1

Pa,2
= x1S1

x2S2
= m2S2

1

m1S2
2

(34)

With the numbers from the example this ratio equals approximately 1.4, meaning
both radiating surfaces act almost equal on the sound pressure at the eigenfrequency
of the second eigenmode. The determination of the eigenfrequency is based on the
fact that there should be a neutral zone in the air spring as both bodies move opposite
to each other. This means that there is a dividing plane inside the enclosure where
the molecules of air stand still. This plane is determined by the volume change
which is related to a displacement of both diaphragms of which the relation is given
by Equation (33).

V1

V2
= x1S1

x2S2
= m2S2

1

m1S2
2

(35)

which is not unexpectedly the same relation as between the sound pressures with
a value of 1.4 for the practical example, meaning that about 60% of the enclosure
volume is used by the loudspeaker and 40% by the bassreflex-port. These findings all
point stronger and stronger to the previously found similarity between the passive
radiator and the port-loaded bassreflex system and indeed this is a true finding. If
the ratio value was equal to one the systems would be exactly the same and this can
be arranged in this example by increasing the air mass with a longer bassreflex port.
The eigenfrequency of the second eigenmode is then equal to the value found with
the passive radiator with ≈ 45 Hz but even with the given dimensions the system
acts almost the same. As a check whether this reasoning is true the eigenfrequency
of the second eigenmode can be calculated on both the loudspeaker mass m1 and
bassreflex port mass m2 each with the stiffness of their own part of the enclosure
volume using Equation (30) of the paper on “Low Frequency Sound Generation by
Loudspeaker Drivers”. Using the values for the loudspeaker with Sd,1 ≈ 0.0466 m2

and Ve,1 = 0.036m3, and for the moving air with Sd,2 ≈ 0.002 m2 and Ve,2 = 0.024m3

and taking for both stiffness values λ= 1.2 and P0 = 105 Pa, the following is obtained:

k1 =λS2
d,1

P0

Ve,1
= 1.2 ·0.04662 105

0.036
= 7.2 ·103 [N/m]

k2 =λS2
d,2

P0

Ve,2
= 1.2 ·0.0022 105

0.024
= 20 [N/m] (36)

Adding the stiffness of the diaphragm suspension (ks = 1.88 ·103 N/m) results in the
total stiffness for the loudspeaker of k1 ≈ 9.1 ·103 N/m. With the moving mass values
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of m1 = 0.13 and m2 = 0.33 ·10−3 kg this results respectively in a natural frequency of:

f1 =ω1

2π
= 1

2π

√
k1

m1
= 1

2π

√
9.1 ·103

0.13
≈ 42 [Hz]

f2 =ω2

2π
= 1

2π

√
k2

m2
= 1

2π

√
20

0.33 ·10−3 ≈ 38 [Hz] (37)

The difference in these calculated values, which should have been equal, is small
enough to prove the assumption, while it is easily caused by the approximation of
the factor 1.4 between the volume parts of the enclosure, having a large impact on
the stiffness. A 10% larger part of the enclosure volume for the loudspeaker and a
corresponding smaller part for the moving air in the bassreflex port would result in
a 5% (≈ 2 Hz) different frequency thus equalising the values.
Based on the found similarity with the passive radiator it is not without logic to expect
that the modal mass, effective on the point where the actuator drives the system is
most probably approximately equal to the modal mass of the first eigenmode. More
exactly it can be determined starting with the first part of Equation (30):

Fr = PeS1 = F2
S1

S2
= m2a2

S1

S2
(38)

Using Equation (33) the following relation between the accelerations is obtained

x1

x2
= a1

a2
= m2S2

1

m1S2
2

⇒ a2 = a1
m1S2

m2S1
(39)

which leads to a simple expression for the reactive force:

Fr =��m2a1
m1��S2

��m2��S1

��S1

��S2
= m1a1 (40)

This means that the reactive force by the coupled mass on the point of insertion of the
driving force is equal to force needed for the acceleration of the driven loudspeaker
diaphragm alone and the coupled mass just doubles the perceived mass of the driven
loudspeaker for the second eigenmode. This fully complies with the “gutfeel” that
the second eigenmode should be in mass balance. It is also logical to state then
that the modal stiffness is twice the perceived stiffness of the enclosure by the
driven loudspeaker. With these findings the frequency response can be derived using
Matlab with the following steps.

• The first step is to model the first eigenmode for the driven loudspeaker which
can be based on the modal mass mm = 0.3 kg with the stiffness of the suspension
of the driven loudspeaker.

• The acoustic radiation by the first eigenmode of the air-mass in the bassreflex
tube is equal and with opposite sign to the acoustic radiation by the first
eigenmode of the driven loudspeaker.
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Figure 12: The construction of the frequency response by means of eigenmodes with a
bassreflex system with air port gives comparable results as with the analytical
solution. The deviations are larger due to the many assumptions on the system.

• The second eigenmode is calculated first on the driven loudspeaker with the
modal mass equal to the double mass of the moving diaphragm acting on
the double stiffness value of the air-spring defined by the volume part of the
enclosure that is compressed/expanded by the driven loudspeaker.

• Finally the responses are combined to give the result.

Figure 12 shows the result of this exercise and when comparing with Figure 10
several deviations are visible. First of all the änti-resonance is not at the same
frequency. This is due to the large impact of relative gains of both eigenmodes on the
point where they intersect. Secondly the small remaining resonance in the sound
output at the first eigenfrequency is not seen. But for the remainder the results
are qualitatively comparable. Certainly this all points out that these simplified
calculations have to be seen as not better than rough approximations to obtain
qualitative indications of the phenomena that can be expected in reality as a large
series of assumptions are made which are all not completely true:

• The air is assumed to flow frictionless for both modes without turbulence.

• All is modelled linear.

• The moving mass in the bassreflex port is estimated with a "rule of thumb"
correction factor for the air just outside the port.
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• The mass of the air in the enclosure is not taken into account.

• The mass of air that is driven to produce sound is neglected for reason of the
low coupling between a diaphragm and the surrounding air but it is not zero.

• The wavelength and speed of the sound can be neglected in the enclosure.

• etc.

Nevertheless the shown dynamic responses are sufficiently representative for real
bassreflex systems to be conclusive.

7 Conclusions onBassreflex forVeryLowFrequen-
cies

When observing the resulting responses from Figure 5 and Figure 10 it is clear that
even with a good sized enclosure of 60 litres and a large loudspeaker the achieved
lowest -3dB frequency is around 35 Hz, with a very steep 18-24 dB/octave slope below
this frequency depending on the applied damping. One can in principle extend this
range and reduce the dynamic effect of the resonance by a compensation filter at the
input signal. This will however drive the driven loudspeaker diaphragm in extreme
excursions, while the entire purpose of bass reflex was to prevent this. Furthermore,
increasing the movement of large volumes of air below the frequency, where the port
takes over the main part of the sound reproduction, will increase flow noise.
The only way to really extend the response to 20 Hz is to decrease all resonance
frequencies with a factor two. Due to the square root relation with mass or stiffness
this means a factor four less stiffness or higher mass or a factor two in both. While a
higher mass will further decrease efficiency, only a four times lower stiffness would
work as long as all stiffness values are decreased that much, so including the sur-
round, spider and the volume of the enclosure. The last one can also be decreased
by means of a smaller loudspeaker but then the moving mass is also decreased.
From this reasoning it can be concluded that only extremely large bass-reflex sys-
tems can produce frequencies around 20 Hz. And even then the stepresponse will
always show a delayed reaction, giving the impression of uncontrolled “woolly” bass.
Finally there have been times that people believed and seriously stated that a bass-
reflex system has a higher efficiency. They used as argument that the pipe is open
and transfers the sound from the back like in a delay-line. The fact is, however,
that a higher output for the same input power only occurs, when the bassreflex
resonance on the second eigenmode (45 Hz in the examples) is insufficiently damped
and then only around that frequency. Below ≈ 35 Hz the roll-off is 4th order, so
the power output and efficiency is lower than with the second order roll-off of a
closed-box enclosure with 35 Hz bandwidth. Above ≈ 50 Hz the air in the pipe or the
passive diaphragm hardly moves and does not transfer anything. This means that it
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Figure 13: By closing off the pipe or passive membrane the effect of the bassreflex principle
on both frequency and time response is made clear. In a closed-box enclosure
the sound output matches the diaphragm motion of the driven loudspeaker.

effectively closes off the enclosure at those frequencies and consequently the sound
output is then equal to the situation with a closed-box enclosure.
The only exception to this statement is the effect of occurring standing waves in
the enclosure at higher frequencies as these will be transferred by the port. For a
subwoofer this is, however, not relevant as even in a sizeable enclosure frequencies of
100 Hz and below with a wavelength of 3 metres or more a half wavelength will not
fit in the enclosure. So standing waves do not occur. Figure 13 is derived from the
optimally damped graphs of Figure 5 where the passive membrane part is omitted
and the response of the system is added when closing off the passive membrane. It
clearly shows the benefit of a smaller diaphragm excursion, however as was shown
before in Figure 6 only after the transient periods are over!. It is also clear that
there is hardly an increase in efficiency, while the steeper slope with less output
below 35 Hz is also evident. Finally the stepresponse of the closed-box situation is
better controlled. When increasing the damping of the bassreflex system this can be
improved, but then the benefit on diaphragm excursion will also decrease. The really
only benefit that remains is when a small size system is required to continuously
produce large amounts of sound at long lasting periods of low frequencies in the
30-50 Hz band. This is often the case with heavy pop-music like dance, metal and
hiphop. In those cases the increased efficiency in that frequency band is beneficial
because of the reduced heat load of the voice coil, reducing the risk of failure. This
kind of music is also less sensitive for the drawbacks of bass-reflex in the delayed
response, while the resonant behaviour is often even appreciated.
Still the conclusion from Section 3 remains valid that for high quality transparent
well-controlled low-frequency sound reproduction one should use a closed-box enclo-
sure. In two other papers it is shown that the favourable time response can even be
further improved by active velocity or acceleration feedback.
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